APAC CIOOutlook

Advertise

with us

  • Technologies
      • Artificial Intelligence
      • Big Data
      • Blockchain
      • Cloud
      • Digital Transformation
      • Internet of Things
      • Low Code No Code
      • MarTech
      • Mobile Application
      • Security
      • Software Testing
      • Wireless
  • Industries
      • E-Commerce
      • Education
      • Logistics
      • Retail
      • Supply Chain
      • Travel and Hospitality
  • Platforms
      • Microsoft
      • Salesforce
      • SAP
  • Solutions
      • Business Intelligence
      • Cognitive
      • Contact Center
      • CRM
      • Cyber Security
      • Data Center
      • Gamification
      • Procurement
      • Smart City
      • Workflow
  • Home
  • CXO Insights
  • CIO Views
  • Vendors
  • News
  • Conferences
  • Whitepapers
  • Newsletter
  • Awards
Apac
  • Artificial Intelligence

    Big Data

    Blockchain

    Cloud

    Digital Transformation

    Internet of Things

    Low Code No Code

    MarTech

    Mobile Application

    Security

    Software Testing

    Wireless

  • E-Commerce

    Education

    Logistics

    Retail

    Supply Chain

    Travel and Hospitality

  • Microsoft

    Salesforce

    SAP

  • Business Intelligence

    Cognitive

    Contact Center

    CRM

    Cyber Security

    Data Center

    Gamification

    Procurement

    Smart City

    Workflow

Menu
    • Cyber Security
    • Hotel Management
    • Workflow
    • E-Commerce
    • Business Intelligence
    • MORE
    #

    Apac CIOOutlook Weekly Brief

    ×

    Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Apac CIOOutlook

    Subscribe

    loading

    THANK YOU FOR SUBSCRIBING

    Bioengineers Discover 3D Print Technology for Organ Replacement!

    Bioprinting technology has gained traction in terms of organ development as it can enable doctors to design organs based on the patient's cells.  

    Bioengineers Discover 3D Print Technology for Organ Replacement!

    By

    Apac CIOOutlook | Wednesday, June 26, 2019

    Stay ahead of the industry with exclusive feature stories on the top companies, expert insights and the latest news delivered straight to your inbox. Subscribe today.

    Bioprinting technology has gained traction in terms of organ development as it can enable doctors to design organs based on the patient's cells. 

    FREMONT, CA – A group of bioengineers from Rice University and the University of Washington has uncovered an innovative technique to overcome the obstacle that hindered the 3D printing of replacement organs. The discovery will enable scientists to design and develop sophisticated vascular networks after the natural passageways for blood, air, lymph, and other vital fluids in the body.

    The group included collaborators from Duke University, Rowan University, and Nervous System, a design firm in Somerville. The featured 3D model is a hydrogel air sack designed after a lung. The airways deliver oxygen to the blood vessels, mimicking the functions of the natural respiratory organ.

    Check out: Top Biotech Companies

    The inability to print the sophisticated vascular network which can deliver nutrients to the densely populated tissues had hindered the development of tissue replacements for several years. Also, the complex and independent systems such as the airways, blood vessels, and bile ducts are physically and biochemically entangled. The researchers have successfully created a bioprinting technique that addresses these problems.

    The new technique is an essential breakthrough in the tissue engineering field. It has birthed the question of whether the 3D printed tissue can eventually replace the natural tissues. The rising demand for effective organ replacement methods is driving the research and development of bioprinting healthy and functional organs. For instance, over 100,000 people are on the waiting list for organ transplants in the United States alone, and even if they receive organs, they will have to depend on immunity-suppressing drugs to prevent organ rejection by the body.

    The prospect of organ development has drawn considerable interest in bioprinting technology, as it could potentially enable the doctors to design organs based on the patient’s cells. The successful implementation of this technology would allow the treatment of millions of patients worldwide. The significance of organ development will likely bring bioengineering to the forefront of the medical sector. Driven by the challenge of creating complex organs, the team of researchers developed an open-source bioprinting technology called the stereolithography apparatus for tissue engineering (SLATE). The technology leverages additive manufacturing to develop each layer using liquid pre-hydrogel, which turns solid when exposed to blue light. 

    More in News

    The Journey Towards Smart City Development

    The Journey Towards Smart City Development

    Harnessing Big Data Analytics to Enhance Business Strategies

    Harnessing Big Data Analytics to Enhance Business Strategies

    AI's Role in Apac's Digital Transformation Journey

    AI's Role in Apac's Digital Transformation Journey

    Impact of Digital Transformation on Retail

    Impact of Digital Transformation on Retail

    I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info

    Copyright © 2025 APAC CIOOutlook. All rights reserved. Registration on or use of this site constitutes acceptance of our Terms of Use and Privacy and Anti Spam Policy 

    Home |  CXO Insights |   Whitepapers |   Subscribe |   Conferences |   Sitemaps |   About us |   Advertise with us |   Editorial Policy |   Feedback Policy |  

    follow on linkedinfollow on twitter follow on rss
    This content is copyright protected

    However, if you would like to share the information in this article, you may use the link below:

    https://www.apacciooutlook.com/news/bioengineers-discover-3d-print-technology-for-organ-replacement-nwid-6533.html